Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1081, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637741

RESUMO

BACKGROUND: The prevalence of tobacco use among various cancer types in Iran remains a significant concern, necessitating a comprehensive analysis to understand the extent and patterns of consumption. This study aimed to systematically review and analyze existing literature to delineate the prevalence of tobacco use across different cancer types in Iran, thereby providing a robust basis for future interventions and policy formulations. METHODS: Adhering to the PRISMA guidelines, we conducted a systematic review and meta-analysis of literature available in PubMed and Scopus databases. The initial search identified 351 records, out of which 44 studies were selected based on their relevance and design. These studies spanned various time frames, starting from the 2001s up until 2022, and encompassed diverse geographical locations and cancer types in Iran. To avoid bias and potential data overlap, we opted to incorporate a single comprehensive study from the Golestan Cohort, encompassing all data, while excluding 10 other studies. Our final analysis incorporated data from 34 studies, which accounted for 15,425 patients and 5,890 reported smokers. Statistical analyses were performed to calculate the overall proportion of tobacco consumption and to conduct subgroup analyses based on different variables such as cancer types, gender, geographical locations, and types of tobacco used. RESULTS: The analysis revealed a substantial prevalence of tobacco use among cancer patients in Iran, with an overall consumption rate of 43%. This rate varied significantly, ranging from 10 to 88% across individual studies. Subgroup analyses further highlighted disparities in tobacco consumption rates across different demographics, geographic areas, and cancer types. Notably, the 'ever' smokers category exhibited the highest prevalence of tobacco use. The study also identified a worrying trend of high cigarette smoking rates, along with variable consumption patterns of other forms of tobacco, including waterpipe, 'Naas', and 'Pipe'. CONCLUSIONS: This systematic review and meta-analysis underscores a significant association between tobacco consumption and various cancer types in Iran, with a prevalence rate among cancer patients being three times higher than the average Iranian population. The findings indicate substantial heterogeneity in tobacco use patterns, emphasizing the need for targeted interventions to address this pressing health issue. The study serves as a critical resource for shaping future policies and strategies aimed at curbing tobacco use and mitigating its adverse effects on cancer prevalence in Iran.


Assuntos
Fumar Cigarros , Neoplasias , Uso de Tabaco , Humanos , Fumar Cigarros/epidemiologia , Irã (Geográfico)/epidemiologia , Neoplasias/epidemiologia , Prevalência , Uso de Tabaco/epidemiologia
2.
Curr Pharm Des ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500284

RESUMO

Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal-based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.

3.
J Gene Med ; 26(2): e3665, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375969

RESUMO

The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.


Assuntos
Anormalidades Linfáticas , Vasos Linfáticos , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anormalidades Linfáticas/genética , Anormalidades Linfáticas/diagnóstico , Anormalidades Linfáticas/patologia , Vasos Linfáticos/anormalidades , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Biomarcadores/metabolismo
4.
Curr Pharm Des ; 29(34): 2692-2701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916491

RESUMO

Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.


Assuntos
Neoplasias Ovarianas , Vacinas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Interferente Pequeno , Imunoterapia , RNA Mensageiro
5.
Curr Pharm Des ; 29(38): 3018-3039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37990895

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE: Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS: In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS: The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION: This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas , Humanos , Oxaliplatina/uso terapêutico , Oxaliplatina/farmacologia , Lipossomos/uso terapêutico , Neoplasias Colorretais/metabolismo , Qualidade de Vida , Antineoplásicos/farmacologia , Nanopartículas/química , Polissacarídeos/uso terapêutico
6.
Curr Pharm Des ; 29(34): 2684-2691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929740

RESUMO

Prostate cancer (PC) is identified as a heterogeneous disease. About 20 to 30% of PC patients experience cancer recurrence, characterized by an increase in the antigen termed serum prostate-specific antigen (PSA). Clinical recurrence of PC commonly occurs after five years. Metastatic castration-resistant prostate cancer (mCRPC) has an intricate genomic background. Therapies that target genomic changes in DNA repair signaling pathways have been progressively approved in the clinic. Innovative therapies like targeting signaling pathways, bone niche, immune checkpoint, and epigenetic marks have been gaining promising results for better management of PC cases with bone metastasis. This review article summarizes the recent consideration of the molecular mechanisms and signaling pathways involved in local and metastatic prostate cancer, highlighting the clinical insinuations of the novel understanding.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Recidiva Local de Neoplasia , Transdução de Sinais
7.
Crit Rev Oncol Hematol ; 189: 104068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37468084

RESUMO

Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.


Assuntos
Neoplasias Esofágicas , Edição de Genes , Animais , Camundongos , Humanos , Edição de Genes/métodos , Engenharia Genética , Modelos Animais de Doenças , Neoplasias Esofágicas/genética
8.
Pathol Res Pract ; 245: 154472, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087995

RESUMO

Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-ß, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.


Assuntos
Neoplasias Gastrointestinais , RNA Circular , Humanos , RNA Circular/genética , Transição Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinases , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Transdução de Sinais/genética
9.
Mol Biotechnol ; 65(3): 350-360, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35474410

RESUMO

Gene delivery to esophageal tissue could provide novel treatments for diseases, such as cancer. The Sleeping Beauty (SB) transposon system, as a natural and non-viral tool, is efficient at transferring transgene into the human genome for human cell genetic engineering. The plasmid-based SB transposon can insert into chromosomes through an accurate recombinase-mediated mechanism, providing long-term expression of transgene integrated into the target cells. In this study, we aimed to investigate the activity of ED-L2 tissue-specific promoter that was engineered from the Epstein-Barr Virus (EBV) and combined with the hyperactive SB100X transposase to achieve the stable expression of T2-Onc3 transposon in esophageal squamous epithelial cells. Here we constructed an SB transposon-based plasmid system to obtain the stable expression of transposon upon introduction of a hyperactive SB transposase under the control of tissue-specific ED-L2 promoter via the lipid-based delivery method in the cultured esophageal squamous cell carcinoma cells. Among established human and mouse cell lines, the (ED-L2)-SB100X transposase was active only in human esophageal stratified squamous epithelial and differentiated keratinocytes derived from skin (KYSE-30 and HaCaT cell lines), where it revealed high promoter activity. Data offered that the 782 bp sequence of ED-L2 promoter has a key role in its activity in vitro. The (ED-L2)-SB100X transposase mediated stable integration of T2-Onc3 in KYSE-30 cells, thereby providing further evidence of the tissue specificity of ED-L2 promoter. The KYSE-30 cells modified with the SB system integrate on average 187 copies of the T2-Onc3 transposon in its genome. In aggregate, the (ED-L2)-SB100X transposase can be efficiently applied for the tissue-specific stable expression of a transgene in human KYSE-30 cells using SB transposon.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Transposases , Animais , Humanos , Camundongos , Elementos de DNA Transponíveis/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Técnicas de Transferência de Genes , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Transposases/genética , Transposases/metabolismo , Linhagem Celular Tumoral
10.
Int J Biol Macromol ; 226: 1226-1235, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442575

RESUMO

Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.


Assuntos
MicroRNAs , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Supressores de Tumor , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética
11.
Mol Cell Probes ; 66: 101869, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208698

RESUMO

BACKGROUND: Epithelial cancers acquire the epithelial to mesenchymal transition (EMT), which leads tumor cells to invade and metastasize to adjacent and distant tissues. The mechanisms involved in EMT phenotype are controlled by numerous markers as well as signalling pathways. Recently, long non-coding RNAs (lncRNAs) were introduced that play the regulatory role in EMT via crosstalk with EMT-related transcription factors and signalling pathways. The present study aimed to investigate the expression of four lncRNAs in human GC and elucidate their probable role in EMT procedure and the pathogenesis of gastric cancer (GC). METHODS: The expression profile of lncRNAs (LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2) and mRNAs (TWIST1, MMP13, MAML1, CD44s, and SALL4) between eighty-three GC and adjacent non-cancerous tissues were assessed by quantitative real-time PCR. RESULTS: The significant downregulation of LINC00365 (66.3%) and RP11-354K4.2 (62.7%) were observed in GC samples; while the upregulation of LINC01389, RP11-138J23.1, TWIST1, MMP13, MAML1, CD44s, and SALL4 were found in 67.5%, 45.8%, 56.6%, 44.6%, 59%, 55.4%, and 62.7% tumors samples at the mRNA level, respectively. Dysregulation of these lncRNAs and EMT-related markers was significantly related to each other in a variety of clinicopathological features of patients (P < 0.05), indicating positive correlations between LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2 with EMT status in GC. CONCLUSION: These EMT-regulating lncRNAs may play a key role in transforming gastric epithelial to mesenchymal phenotype and can be novel therapeutic targets for GC. Our results highlight the importance of discovering new lncRNAs involved in gastric carcinogenesis. Detailed molecular mechanisms of these noncoding-coding markers in GC are urgently required.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Transição Epitelial-Mesenquimal/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo
12.
Exp Cell Res ; 406(2): 112757, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34331909

RESUMO

BACKGROUND: Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.


Assuntos
Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Engenharia Genética/métodos , Animais , Humanos , Camundongos
13.
J Mol Histol ; 52(3): 597-609, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33884540

RESUMO

PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3, crucial immune checkpoint molecules in the tumor microenvironment, identify as key targets for cancer immunotherapy. There is a correlation between immune cells and epithelial-mesenchymal transition (EMT)-related genes expression in varies human cancers. In this study, we aimed to investigate the probable association between expression of immune checkpoints and EMT in esophageal squamous cell carcinoma (ESCC) with clinical treats for providing the new therapeutic targets and prognostic value for the disease. Quantitative real-time PCR was used to investigate the gene expression profile of immune checkpoints (PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3) and EMT (TWIST1 and MMP-13) genes based on the mRNA expression levels in 51 ESCC tissues. The upregulation of CTLA-4, PD-1, PD-L1, TIM-3, LAG-3, MMP-13, and TWIST1 were observed in 31.37%, 29.41%, 21.56%, 39.21%, 25.49%, 60.78%, and 56.86% of ESCC cases at the mRNA level, respectively. Dysregulation of immune checkpoints was related to lymph node involvement, stage of tumor progression, and depth of tumor invasion (P < 0.05). While overexpression of MMP-13 and TWIST1 was associated with lymph node involvement, stage of tumor progression, and grade of tumor differentiation (P < 0.05). The mRNA expression of immune checkpoint genes was significantly correlated to each other's (P = 0.000). Of importance, the data explored the significant association between the concomitant expression of immune checkpoints and EMT-related genes with each other in a variety of clinicopathological traits (P < 0.05). Consequently, immune checkpoints were positively correlated with EMT status in ESCC. The correlation between tumor immune microenvironment with the elevation of multiple immune checkpoints and EMT status may help to identify potential biomarkers for the simultaneous clinical use of multiple immune checkpoints blockade and other immunotherapies approaches for advanced ESCC patients.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas de Checkpoint Imunológico/genética , Terapia de Alvo Molecular , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Prognóstico , Mapas de Interação de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Mol Cell Biochem ; 476(6): 2465-2478, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33604811

RESUMO

Matrix metalloproteinases (MMPs) play key roles in epithelial-mesenchymal transition (EMT) for the development of cancer cell invasion and metastasis. MMP-13 is an extracellular matrix (ECM)-degrading enzyme that plays crucial roles in angiogenesis, cell cycle regulation, niche maintenance, and transforming squamous epithelial cells in various tissues. CD44, a transmembrane glycoprotein expressed on esophageal tumor cells, is required for EMT induction and invasion in esophageal squamous cell carcinoma (ESCC). The transcription factor TWIST1, as EMT and stemness marker, regulates MMPs expression and is identified as the downstream target of CD44. In this study, we aimed to investigate the probable interplay between the expression of key genes contributing to ESCC development, including MMP-13, TWIST1, and CD44 with clinical features for introducing novel diagnostic and therapeutic targets in the disease. The gene expression profiling of MMP-13, TWIST1, and CD44 was performed using quantitative real-time PCR in tumor tissues from 50 ESCC patients compared to corresponding margin non-tumoral tissues. Significant overexpression of MMP-13, CD44S, CD44V3, CD44V6, and TWIST1 were observed in 74%, 36%, 44%, 44%, and 52% of ESCC tumor samples, respectively. Overexpression of MMP-13 was associated with stage of tumor progression, metastasis, and tumor location (P < 0.05). There was a significant correlation between TWIST1 overexpression and grade (P < 0.05). Furthermore, overexpression of CD44 variants was associated with stage of tumor progression, grade, tumor invasion, and location (P < 0.05). The results indicated the significant correlation between concomitant expression of MMP-13/TWIST1, TWIST1/CD44, and CD44/MMP-13 with each other in a variety of clinicopathological traits, including depth of tumor invasion, tumor location, stage of tumor, and lymph node involvement in ESCC tissue samples (P < 0.05). Collectively, our results indicate that the TWIST1-CD44-MMP-13 axis is involved in tumor aggressiveness, proposing these genes as regulators of EMT, diagnostic markers, and therapeutic targets in ESCC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Receptores de Hialuronatos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Idoso , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Receptores de Hialuronatos/genética , Masculino , Metaloproteinase 13 da Matriz/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada a Twist/genética
15.
Mol Biol Rep ; 47(5): 3439-3448, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372171

RESUMO

The homeobox transcription factor MEIS1 is involved in cell fate decision, stem cells properties, gastrointestinal (GI) tract development, and progression of several malignancies such as esophageal squamous cell carcinoma (ESCC). Increasing evidences suggest the crosstalk between MEIS1 and cell signaling pathways. Therefore, our aim in present study was to investigate the probable linkage of MEIS1 expression with key genes of different cell signaling pathways in ESCC tumorigenesis, and their correlation with clinicopathological feature of the patients. The gene expression profiling of MEIS1 and different cell signaling genes including SALL4, SIZN1, and HEY1 (stemness state, BMP, and NOTCH signaling pathways, respectively) was performed using quantitative real-time reverse transcription polymerase chain reaction (PCR) in fresh tumoral compared to margin normal tissues of 50 treatment-naive ESCC samples. The mRNA expression of MEIS1/SIZN1, SIZN1/HEY1, and SIZN1/SALL4 were significantly associated to each other (P < 0.05). There were remarkable correlations between concomitant mRNA expression of MEIS1 and SIZN1 in tumors with invasion to adventitia, early stages of tumor progression and poorly differentiated tumors. Moreover, expression of MEIS1 and HEY1 was correlated to each other in primary stages of tumor progression and non-invaded tumors. Expression of MEIS1 was significantly associated with SALL4 in poorly differentiated tumors. Our results indicated that correlation between different cell signaling pathway-related genes may lead to esophageal tumorigenesis. It is illustrated that MEIS1 as a HOX gene has a significant correlation with stemness state, BMP, and NOTCH signaling pathways via the SIZN1.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Proteína Meis1/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Carcinogênese , Proteínas de Ciclo Celular/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Genes Homeobox , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Meis1/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
16.
J Gastrointest Cancer ; 51(1): 179-188, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30957200

RESUMO

PURPOSE: Esophageal squamous cancer cell (ESCC), with late diagnosis and poor rate of survival, is a significant cause of mortality in the developing countries. The hypothesis of rare high penetrance with mutations in new genes may explain the underlying predisposition in some of these familial cases. METHODS: Exome sequencing was performed in the patients with ESCC with strong disease aggregation, two sisters with ESCC cancer, and one with breast cancer. Data analysis selected only very rare variants (0-0.1%) located in genes with a role compatible with cancer. In addition, the homology modeling of the novel mutation (A459D) discovered in FAP gene was performed by using the online Swiss-Prot server for automated modeling and the resulted structure has been modified and analyzed by using bioinformatics software to thoroughly study the structural deficiencies caused by the novel mutation. RESULTS: Ten final candidate variants were selected and six genes validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in FAP, BOD1L, RAD51, Gasdermin D, LGR5, and CERS4. A novel, human mutation C1367A encoding Ala459 Asp (accession number: KT988039), occurring in the blade of the ß propeller domain, was identified in two sisters with ESCC. CONCLUSIONS: We identified novel mutations in three drug delivery genes, a tumor suppressor and also a stem cell marker of esophageal that may have a role in cancer treatment and are involved in cellular pathways, which supports their putative involvement in germ-line predisposition to this neoplasm.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Sequenciamento do Exoma/métodos , Gelatinases/genética , Proteínas de Membrana/genética , Serina Endopeptidases/genética , Sequência de Aminoácidos , Endopeptidases , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Análise de Sobrevida
17.
Mol Genet Genomic Med ; 7(7): e00746, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090196

RESUMO

BACKGROUND: MEIS1 (Myeloid ecotropic viral integration site 1), as a homeobox (HOX) transcription factor, has a dual function in different types of cancer. Although numerous roles are proposed for MEIS1 in differentiation, stem cell function, gastrointestinal development and tumorigenesis, the involved molecular mechanisms are poor understood. Our aim in this study was to elucidate the functional correlation between MEIS1, as regulator of differentiation process, and the involved genes in cell differentiation in human esophageal squamous carcinoma (ESC) cell line KYSE-30. METHODS: The KYSE-30 cells were transduced using recombinant retroviral particles containing specific shRNA sequence against MEIS1 to knockdown MEIS1 gene expression. Following RNA extraction and cDNA synthesis, mRNA expression of MEIS1 and the selected genes including TWIST1, EGF, CDX2, and KRT4 was examined using relative comparative real-time PCR. RESULTS: Retroviral transduction caused a significant underexpression of MEIS1 in GFP-hMEIS1 compared to control GFP cells approximately 5.5-fold. While knockdown of MEIS1 expression caused a significant decrease in EGF and TWIST1 mRNA expression, nearly -8- and -12-fold respectively, it caused a significant increase in mRNA expression of differentiation markers including KRT4 and CDX2, approximately 34- and 1.14-fold, correspondingly. CONCLUSION: MEIS1 gene silencing in KYSE-30 cells increased expression of epithelial markers and decreased expression of epithelial-mesenchymal transition (EMT) marker TWIST1. It may highlight the role of MEIS1 in differentiation process of KYSE-30 cells. These results may confirm that MEIS1 silencing promotes differentiation and decreases EMT capability of ESC cell line KYSE-30.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteína Meis1/genética , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes/métodos , Genes Homeobox , Humanos , Proteína Meis1/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Proteína 1 Relacionada a Twist/genética
18.
Life Sci ; 219: 136-143, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641083

RESUMO

Gastric cancer (GC) as the third most common cause of cancer-associated mortality worldwide is one of the cancers with very high heterogeneity. Cancer stem cells (CSCs) as a small subset of cancer cells in solid tumors with the self-renewal, differentiation and tumorigenic ability are responsible for tumor initiation, progression, recurrence, metastasis, and resistance to current treatments. Therefore, eradication of CSCs is very vital to cure cancer. Here, we first isolated and identified sphere-forming cells in tumor tissue from four GC patients and then analyzed T cell responses induced by monocyte-derived dendritic cells (DCs) loaded with total mRNA of sphere-forming cells in terms of interferon-gamma (IFN-γ) gene expression and specific cytotoxicity. Spheroid colonies were formed in serum-free media. Sphere-forming cells dissociated from tumorspheres heterogeneously expressed CD44, CD54, and epithelial cell adhesion molecule (EpCAM) markers and generated one tumor in nude mice. These results demonstrated that gastric CSCs were enriched in tumorspheres. Cytokine-matured DCs loaded with mRNA of sphere-forming cells were able to induce IFN-γ gene expression in T-lymphocytes after a 12-day co-culture. mRNA level of IFN-γ gene in these lymphocytes was more highly expressed compared to stimulated T-lymphocytes by DCs transfected with normal tissue (6.4-9.39 folds). Cytotoxic activity of primed T-lymphocytes with antigens of sphere-forming cells was significantly higher than normal tissue antigens and mock DCs (P ≤ 0.0001). Taken together, DCs loaded with mRNA of sphere-forming cells that elicit effectively specific T cell-mediated immune responses in vitro, may be considered as a promising therapeutic vaccination in GC patients in future.


Assuntos
Células Dendríticas/metabolismo , Imunidade Celular/imunologia , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/metabolismo , Neoplasias Gástricas/imunologia , Linfócitos T/imunologia , Animais , Eletroporação , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Gástricas/terapia
19.
Asian Pac J Cancer Prev ; 19(5): 1313-1318, 2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29802692

RESUMO

Objective: CD44 is an important cell adhesion molecule that plays a key role in growth, invasion, proliferation and metastasis of cancer cells. CD44 protein over-expression is associated with a poor prognosis of gastric cancer (GC) and previous studies have shown that CD44 gene polymorphisms could affect survival and recurrence. In this study, we tested the hypothesis that polymorphisms impacting on the CD44 signaling pathway may predict clinical outcomes in patients with GC. Materials and Methods: DNA was extracted from blood of 150 healthy individuals and formalin-fixed paraffin-embedded (FFPE) tumor tissue of 150 patients. The two polymorphisms rs187116 and rs7116432 were studied by RFLP-PCR and sequencing techniques. Results: There was a strong significant correlation between single nucleotide polymorphisms (SNPs) in the CD44 gene, tumor recurrence, and overall survival (p <0.0001). The existence of a significant relationship between tumor recurrence and overall survival was proved in this study, with at least one allele G for the polymorphism rs187116 and at least one allele A for polymorphism rs7116432. Conclusion: These results provide evidence of a relationship between CD44 gene polymorphisms and clinical outcomes in our GC patients. This result could help identify individuals with GC who have a high risk of tumor recurrence.


Assuntos
Biomarcadores Tumorais/genética , Receptores de Hialuronatos/genética , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único , Neoplasias Gástricas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Taxa de Sobrevida
20.
Rep Biochem Mol Biol ; 5(2): 83-90, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28367468

RESUMO

BACKGROUND: Human Cripto-1, a member of the EGF-CFC family, is involved in embryonic development, embryonic stem cell maintenance, and tumor progression. It also participates in multiple cell signaling pathways including Wnt, Notch, and TGF-ß. Remarkably, it is expressed in cancer stem cell (CSC) compartments, boosting tumor cell migration, invasion, and angiogenesis. Although Cripto-1 is overexpressed in a variety of human malignant tumors, its expression in esophageal squamous cell carcinoma (ESCC) remains unclear. Our aim in this study was to evaluate the possible oncogenic role of Cripto-1 in ESCC progression and elucidate its association with clinicopathological parameters in patients. METHODS: In this study, Cripto-1 expression in 50 ESCC tissue samples was analyzed and compared to corresponding margin-normal esophageal tissues using quantitative real-time PCR. RESULTS: Cripto-1 was overexpressed in nearly 40% of ESCC samples compared with normal tissue samples. Significant correlations were observed between Cripto-1 expression and tumor differentiation grade, progression stage, and location (p < 0.05). CONCLUSIONS: Our results indicate that overexpression of Cripto-1 is involved in the development of ESCC. Further assessment will be necessary to determine the role of Cripto-1 cross talk in ESCC tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...